102 research outputs found

    An approach to predict population exposure to ambient air PM2.5 concentrations and its dependence on population activity for the megacity London

    Get PDF
    © 2019 Elsevier Ltd. All rights reserved. This manuscript is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence http://creativecommons.org/licenses/by-nc-nd/4.0/.A comprehensive modelling approach has been developed to predict population exposure to the ambient air PM2.5 concentrations in different microenvironments in London. The modelling approach integrates air pollution dispersion and exposure assessment, including treatment of the locations and time activity of the population in three microenvironments, namely, residential, work and transport, based on national demographic information. The approach also includes differences between urban centre and suburban areas of London by taking account of the population movements and the infiltration of PM2.5 from outdoor to indoor. The approach is tested comprehensively by modelling ambient air concentrations of PM2.5 at street scale for the year 2008, including both regional and urban contributions. Model analysis of the exposure in the three microenvironments shows that most of the total exposure, 85%, occurred at home and work microenvironments and 15% in the transport microenvironment. However, the annual population weighted mean (PWM) concentrations of PM2.5 for London in transport microenvironments were almost twice as high (corresponding to 13-20 µg/m3) as those for home and work environments (7-12 µg/m3). Analysis has shown that the PWM PM2.5 concentrations in central London were almost 20% higher than in the surrounding suburban areas. Moreover, the population exposure in the central London per unit area was almost three times higher than that in suburban regions. The exposure resulting from all activities, including outdoor to indoor infiltration, was about 20% higher, when compared with the corresponding value obtained assuming inside home exposure for all times. The exposure assessment methodology used in this study predicted approximately over one quarter (-28%) lower population exposure, compared with using simply outdoor concentrations at residential locations. An important implication of this study is that for estimating population exposure, one needs to consider the population movements, and the infiltration of pollution from outdoors to indoors.Peer reviewedFinal Accepted Versio

    Evaluation of an urban modelling system against three measurement campaigns in London and Birmingham

    Get PDF
    Copyright © 2016 Turkish National Committee for Air Pollution Research and Control. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).The results of three measurement campaigns are presented in this study. The campaigns have been undertaken at an urban roadside site in London, for more than a year and three months in 2003e2004 and for a year in 2008, and at an urban background site in Birmingham, U.K, for about four months in 2002. The concentrations of PM2.5, PM10, NOx and NO2 were predicted using the roadside dispersion model CAR-FMI, combined with a national U.K. emission model, a meteorological pre-processor, and measured values at urban background stations. The agreement of the predicted and measured hourly and daily time-series has been assessed statistically for all of the campaigns and pollutants. For instance, the Indices of Agreement (IA) in all the campaigns ranged from 0.68 to 0.78, 0.87, from 0.70 to 0.80, and from 0.61 to 0.83 for PM2.5, PM10, NOx and NO2, respectively. However, in case of the campaigns in London, both the PM fractions and the nitrogen oxide concentrations were under-predicted. The model performance in terms of atmospheric stability, wind speeds and other factors was analysed, and reasons for the disagreement of predictions and measurements have been discussed. It is useful to consider the model performance statistics for several measurement campaigns simultaneously as some of the results were found to be specific only to one or two campaigns. The spatial concentration distribution of NOx in London for 2008 has also been presented.Peer reviewedFinal Published versio

    Modeling of the Concentrations of Ultrafine Particles in the Plumes of Ships in the Vicinity of Major Harbors

    Get PDF
    Marine traffic in harbors can be responsible for significant atmospheric concentrations of ultrafine particles (UFPs), which have widely recognized negative effects on human health. It is therefore essential to model and measure the time evolution of the number size distributions and chemical composition of UFPs in ship exhaust to assess the resulting exposure in the vicinity of shipping routes. In this study, a sequential modelling chain was developed and applied, in combination with the data measured and collected in major harbor areas in the cities of Helsinki and Turku in Finland, during winter and summer in 2010-2011. The models described ship emissions, atmospheric dispersion, and aerosol dynamics, complemented with a time-microenvironment-activity model to estimate the short-term UFP exposure. We estimated the dilution ratio during the initial fast expansion of the exhaust plume to be approximately equal to eight. This dispersion regime resulted in a fully formed nucleation mode (denoted as Nuc(2)). Different selected modelling assumptions about the chemical composition of Nuc(2) did not have an effect on the formation of nucleation mode particles. Aerosol model simulations of the dispersing ship plume also revealed a partially formed nucleation mode (Nuc(1); peaking at 1.5 nm), consisting of freshly nucleated sulfate particles and condensed organics that were produced within the first few seconds. However, subsequent growth of the new particles was limited, due to efficient scavenging by the larger particles originating from the ship exhaust. The transport of UFPs downwind of the ship track increased the hourly mean UFP concentrations in the neighboring residential areas by a factor of two or more up to a distance of 3600 m, compared with the corresponding UFP concentrations in the urban background. The substantially increased UFP concentrations due to ship traffic significantly affected the daily mean exposures in residential areas located in the vicinity of the harbors.Peer reviewe

    Evaluation of the impact of wood combustion on benzo[a] pyrene (BaP) concentrations; ambient measurements and dispersion modeling in Helsinki, Finland

    Get PDF
    Even though emission inventories indicate that wood combustion is a major source of polycyclic aromatic hydrocarbons (PAHs), estimating its impacts on PAH concentration in ambient air remains challenging. In this study the effect of local small-scale wood combustion on the benzo[a] pyrene (BaP) concentrations in ambient air in the Helsinki metropolitan area in Finland is evaluated, using ambient air measurements, emission estimates, and dispersion modeling. The measurements were conducted at 12 different locations during the period from 2007 to 2015. The spatial distributions of annual average BaP concentrations originating from wood combustion were predicted for four of those years: 2008, 2011, 2013, and 2014. According to both the measurements and the dispersion modeling, the European Union target value for the annual average BaP concentrations (1 ngm(-3) ) was clearly exceeded in certain suburban detached-house areas. However, in most of the other urban areas, including the center of Helsinki, the concentrations were below the target value. The measured BaP concentrations highly correlated with the measured levoglucosan concentrations in the suburban detached-house areas. In street canyons, the measured concentrations of BaP were at the same level as those in the urban background, clearly lower than those in suburban detached-house areas. The predicted annual average concentrations matched with the measured concentrations fairly well. Both the measurements and the modeling clearly indicated that wood combustion was the main local source of ambient air BaP in the Helsinki metropolitan area.Peer reviewe

    Evaluation of the performance of four chemical transport models in predicting the aerosol chemical composition in Europe in 2005

    Get PDF
    © Author(s) 2016.Four regional chemistry transport models were applied to simulate the concentration and composition of particulate matter (PM) in Europe for 2005 with horizontal resolution 20 km. The modelled concentrations were compared with the measurements of PM chemical composition by the European Monitoring and Evaluation Programme (EMEP) monitoring network. All models systematically underestimated PM10 and PM2:5 by 10–60 %, depending on the model and the season of the year, when the calculated dry PM mass was compared with the measurements. The average water content at laboratory conditions was estimated between 5 and 20% for PM2:5 and between 10 and 25% for PM10. For majority of the PM chemical components, the relative underestimation was smaller than it was for total PM, exceptions being the carbonaceous particles and mineral dust. Some species, such as sea salt and NO3, were overpredicted by the models. There were notable differences between the models’ predictions of the seasonal variations of PM, mainly attributable to different treatments or omission of some source categories and aerosol processes. Benzo(a)pyrene concentrations were overestimated by all the models over the whole year. The study stresses the importance of improving the models’ skill in simulating mineral dust and carbonaceous compounds, necessity for high-quality emissions from wildland fires, as well as the need for an explicit consideration of aerosol water content in model–measurement comparison.Peer reviewedFinal Published versio

    Modeling and measurements of urban aerosol processes on the neighborhood scale in Rotterdam, Oslo and Helsinki

    Get PDF
    This study evaluates the influence of aerosol processes on the particle number (PN) concentrations in three major European cities on the temporal scale of 1aEuro-h, i.e., on the neighborhood and city scales. We have used selected measured data of particle size distributions from previous campaigns in the cities of Helsinki, Oslo and Rotterdam. The aerosol transformation processes were evaluated using the aerosol dynamics model MAFOR, combined with a simplified treatment of roadside and urban atmospheric dispersion. We have compared the model predictions of particle number size distributions with the measured data, and conducted sensitivity analyses regarding the influence of various model input variables. We also present a simplified parameterization for aerosol processes, which is based on the more complex aerosol process computations; this simple model can easily be implemented to both Gaussian and Eulerian urban dispersion models. Aerosol processes considered in this study were (i) the coagulation of particles, (ii) the condensation and evaporation of two organic vapors, and (iii) dry deposition. The chemical transformation of gas-phase compounds was not taken into account. By choosing concentrations and particle size distributions at roadside as starting point of the computations, nucleation of gas-phase vapors from the exhaust has been regarded as post tail-pipe emission, avoiding the need to include nucleation in the process analysis. Dry deposition and coagulation of particles were identified to be the most important aerosol dynamic processes that control the evolution and removal of particles. The error of the contribution from dry deposition to PN losses due to the uncertainty of measured deposition velocities ranges from -76 to +64aEuro-%. The removal of nanoparticles by coagulation enhanced considerably when considering the fractal nature of soot aggregates and the combined effect of van der Waals and viscous interactions. The effect of condensation and evaporation of organic vapors emitted by vehicles on particle numbers and on particle size distributions was examined. Under inefficient dispersion conditions, the model predicts that condensational growth contributes to the evolution of PN from roadside to the neighborhood scale. The simplified parameterization of aerosol processes predicts the change in particle number concentrations between roadside and urban background within 10aEuro-% of that predicted by the fully size-resolved MAFOR model.Peer reviewe
    • …
    corecore